SU-E-T-300: Monte Carlo Simulation of Single-Plane Magnetically Focused Narrow Proton Beams.
نویسندگان
چکیده
Purpose To investigate narrow, elongated magnetically focused proton beams and compare their properties with passively collimated beams using Monte Carlo simulation. METHODS We performed Geant4 Monte Carlo simulations involving a single quadrapole focusing magnet, thereby creating a flattened beam with an elongated elliptical cross section. The parameters of the magnet were chosen to mimic k=3 (quadrapole) Halbach cylinders that are available commercially as assemblies of rare earth permanent magnetic materials. For comparison, simulations were also performed with the same beam line components and passively collimated beams (using an elliptically shaped collimator). To facilitate fair comparison, efforts were made to closely match the planned treatment volumes (PTV) for each simulation case in dose, volume, and major and minor diameters of the elliptically shaped PTV at Bragg depth. RESULTS Magnetic focusing delivered significantly better dose localization to the target over collimated beams which are the current beam delivery modality. Compared to collimated beams, the magnetically focused beams showed a 31% smaller therapeutic ratio, a 31% smaller integrated dose, a 34% smaller entrance dose, a 30% larger peak-to-entrance central depth dose ratio, a 37% smaller penumbra volume, and were 35% more efficient in dose delivery (based on proton number). CONCLUSIONS The clinically relevant advantages of the magnetically focused beams compared to the collimated beams (the current standard of care) can be attributed to the preferential directional acceleration of protons due to the magnetic field. Our simulations suggest such magnets can be used to deliver tissue sparing doses to normal and at-risk tissue, and enhanced dose to elongated, narrow targets. Future work to characterize and test prototype magnets is in progress. Such beams my find application in novel proton treatments including application to the spinal cord.
منابع مشابه
Assessment of secondary particles in breast proton therapy by Monte Carlo simulation code using MCNPX
Background: The present study aimed to investigate the equivalent dose in vital organs, including heart and lung, due to secondary particles produced during breast proton therapy. Materials and Methods: The numerical ORNL female-phantom was improved and simulated using the Monte Carlo MCNPX code. The depth-dose profile of proton beams with different energies was simulated. The proper energy ran...
متن کاملMonte Carlo evaluation of magnetically focused proton beams for radiosurgery.
The purpose of this project is to investigate the advantages in dose distribution and delivery of proton beams focused by a triplet of quadrupole magnets in the context of potential radiosurgery treatments. Monte Carlo simulations were performed using various configurations of three quadrupole magnets located immediately upstream of a water phantom. Magnet parameters were selected to match what...
متن کاملEvaluation of the dose and flux of secondary particles in the lung tissue in breast proton therapy using the Monte Carlo simulation code
Unlike proton therapy, conventional radiation therapy directs X-rays not only at the tumor but also unavoidably at nearby healthy tissue. Protons deliver radiation to tumor tissue while the healthy structures will be spared during proton therapy. When protons travel through matter, secondary particles like neutrons and photons are produced. It is believed that the secondary dose can lead to sec...
متن کاملA method for range calculation of proton in liquid water: Validation study using Monte Carlo method and NIST data
Introduction: The main advantage of using ion beams over photons in radiotherapy is due to their inverse depth-dose profiles, allowing higher doses to tumors, while better sparing normal tissues. When calculating dose distributions with ion beams, one crucial point is the uncertainty of the Bragg-peak range. Recently great effort is devoted to enhance the accuracy of the comput...
متن کاملA Comparison of dosimetric parameters between IAEA TRS-398, AAPM TG-51 protocols and Monte-Carlo simulation
Background: Two protocols of AAPM TG-51 and IAEA TRS-398 were compared followed by a measurement and Monte Carlo simulation of beam quality correction factor, KQ, AAPM TG-51 and IAEA TRS-398 protocols were compared for the absorbed dose to water for DW, and KQ parameters. Materials and Methods: Dose measurements by either protocols were performed with cylindrical and plane parallel ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 39 6Part14 شماره
صفحات -
تاریخ انتشار 2012